Abstract
Submarine landslide and even its evolution to high-speed sliding masses can seriously threaten the safety of ocean engineering. Earthquakes are the most frequent trigger factors for landslides, and thus, seismic instability evaluation of submarine slopes has become a hot topic. However, the mechanism of submarine slope failures triggered by earthquakes is enormously complex. Although certain satisfactory results have been achieved in specific slopes, submarine landslides are still difficult to monitor and control, meaning that prevention-oriented research remains the mainstream. Regional slide predictive analyses of vast submarine slopes should be emphasized, but relevant research is notably rare. In this paper, a regional assessment methodology for submarine slope instabilities under seismic loads is proposed, and susceptibility mapping of landslides is established. First, considering the quasi-static bidirectional seismic action and the marine soil strength-weakening effect, an infinite slope sliding mode is used to establish the stability evaluation formula for a multiple soil-layer slope. Second, according to water depth data and GIS techniques, slope gradients are investigated, and the safety factors of submarine slopes located at specific stations are acquired. Furthermore, discrete stations are taken as sample points, and susceptibility mapping of submarine landslides is achieved using the inverse distance weighted and GIS techniques. Finally, regional seismic instability assessments of submarine slopes are conducted in the northeastern South China Sea, and various factors that influence submarine landslides are briefly discussed. This study offers an important basis for the development of marine resources and the risk assessments in ocean engineering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have