Abstract

Deficiency of autologous skin for reconstruction of severe wounds is a major problem in plastic surgery. Autologous substitutes can provide additional coverage, but due to the duration of production, treatment is significantly delayed. The allogeneic approach offers a potential of having an off-the-shelf solution for the immediate application. In this study, we assess the engraftment and immunogenicity of allogeneic bilayered bioengineered skin prepared by a self-assembly method. Bioengineered skin has the potential immunological advantage of lacking passenger leukocytes including antigen-presenting cells. The skin constructs were transplanted across major histocompatibility complex (MHC) barriers in a porcine animal model. Animals received a second grafting of the same skin construct 7 weeks after the first set of grafts together with MHC-matched constructs to assess for clinical sensitization. All alloconstructs successfully engrafted with histologic evidence of neovascularization by day 4. Complete cellular rejection and tissue loss occurred by day 8 for most grafts. After the second application, accelerated rejection (<4 days) took place with the development of swine MHC-specific cytotoxic alloantibody. These data demonstrate preclinically that self-assembled allogeneic constructs engraft and reject similar to allogeneic skin despite the absence of professional donor antigen-presenting cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.