Abstract

The fungal skin disease chytridiomycosis has caused the devastating decline and extinction of hundreds of amphibian species globally, yet the potential for evolving resistance, and the underlying pathophysiological mechanisms remain poorly understood. We exposed 406 naïve, captive-raised alpine tree frogs (Litoria verreauxii alpina) from multiple populations (one evolutionarily naïve to chytridiomycosis) to the aetiological agent Batrachochytrium dendrobatidis in two concurrent and controlled infection experiments. We investigated (A) survival outcomes and clinical pathogen burdens between populations and clutches, and (B) individual host tissue responses to chytridiomycosis. Here we present multiple interrelated datasets associated with these exposure experiments, including animal signalment, survival and pathogen burden of 355 animals from Experiment A, and the following datasets related to 61 animals from Experiment B: animal signalment and pathogen burden; raw RNA-Seq reads from skin, liver and spleen tissues; de novo assembled transcriptomes for each tissue type; raw gene expression data; annotation data for each gene; and raw metabolite expression data from skin and liver tissues. These data provide an extensive baseline for future analyses.

Highlights

  • Background & SummaryOver one third of all amphibian species around the world are threatened with extinction[1]

  • Total RNA was isolated from skin, liver and spleen tissue samples that had been stored in RNAlater following the manufacturer’s protocol for 5-Prime PerfectPure RNA Tissue kits (Eppendorf-5 Prime, Boulder, CO, USA) for liver and skin samples and Qiagen RNeasy mini kits for spleen samples

  • Total RNA samples were reconstituted with nuclease-free water, quantified with a fluorimetric RiboGreen assay, and had their quality assessed with capillary electrophoresis (Agilent BioAnalyzer 2100; Agilent, Santa Clara, CA, USA)

Read more

Summary

Background & Summary

Over one third of all amphibian species around the world are threatened with extinction[1]. The specific aims of our experiments and data collection were to (1) examine associations between survival, infection burden, and tissue immune and physiologic responses (via measurement of gene expression and metabolite accumulation) within individuals, clutches, and populations of frogs, (2) compare population responses between naïve and long-exposed populations, and (3) compare infection responses at various times post exposure, with a focus on the subclinical infection stage. Additional analyses could include (1) the investigation of specific genes or gene groups of interest, identified using sequence information provided by transcriptome assembly, (2) the examination of gene and isoform variation between populations, and (3) the determination of novel or common mechanisms of resistance/susceptibility amongst other well characterised disease systems

Methods
Transcriptomics methods
Findings
Metabolomics methods
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call