Abstract

Some Escherichia coli serotypes are important human pathogens causing diarrhea or in some cases, life threatening diseases. E. coli is also a typical indicator microorganism, routinely used for assessing the microbiological quality of water especially to indicate fecal contamination. The soil is a sink and route of transmission to water and food resources and it is thus important to understand the survival of enterotoxigenic E. coli strains in soil. This study monitored the survival of six E. coli strains in sandy and loam soil. Furthermore, since biochar is a commonly used soil conditioner, the study investigated the impact of biochar amendment (15%) on the survival of the E. coli strains in (biochar-amended) sandy and loam soils. Addition of biochar affected the physicochemical properties of both soils, altering potassium levels, calcium, magnesium, sodium as well as levels of other metal ions. It increased the organic matter of loam soil from 44 g/dm3 to 52 g/dm3, and increased the pH of both sandy and loam soils. Survival and persistence of the E. coli strains generally varied according to soil type, with strains generally surviving better (P ≤ 0.05) in loam soil compared to in sandy soil. In loam soil and biochar amended loam soils, E. coli strains remained culturable until the 150th day with counts ranging between 3.00 and 5.94 ± 0.04 log CFU/g. The effects of biochar on the physicochemical properties of soil and the response of the E. coli strains to biochar amendment was variable depending on soil type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call