Abstract

Methoxy-DDT is an organochlorine pesticide extensively used in agricultural practices as a DDT substitute. Methoxy-DDT has been found and quantified in several investigations in groundwater, drinking water, sediment, and various biota. Therefore, designing efficient and cost-effective adsorbents for removing methoxy-DDT is vital. In this work, we embedded Ficus benghalensis L. derived carbon dots (CDs) in mesoporous silica (MS) to fabricate MS-CDs nanohybrid material. MS-CDs nanohybrid exhibited remarkable selectivity and removal efficiency towards methoxy-DDT, outperforming other endocrine disruptors. Parameters for industrial-scale fixed-bed adsorption columns, such as bed capacity, length, and breakthrough times, were analyzed. The kinetic study revealed that pseudo-second-order (PSO) adsorption and isotherm analysis confirmed the Langmuir model as the best fit. Small bed adsorption (SBA) column analysis was carried out using spiked Yamuna river water, and the breakthrough curves were demonstrated by varying MS-CDs bed height. The maximum adsorption capacity obtained for methoxy-DDT was 17.16 mg/g at breakthrough and 49.98 mg/g at exhaustion. The adsorbent showed 86.53% removal efficiency in the 5th cycle, demonstrating good reusability. These results indicate that the developed material MS-CDs-based organic sphere is an effective adsorbent for aqueous methoxy-DDT adsorption and can be applied to wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.