Abstract
As virtualization becomes more and more popular, how to guarantee survivability of a virtual infrastructure (VI) over a wide-area optical network is increasingly important. In this paper, we approach the problem of survivable VI mapping (SVIM) from a few unique perspectives. One of the most distinguishing perspectives is that a large-scale regional failure could destroy one or more facility nodes to which some VI nodes are mapped. Accordingly, redundant facility nodes at different geographical locations and redundant optical connections have to be provisioned such that the VI can still be mapped after the failure. Another distinguishing perspective is that with failure-dependent protection, the SVIM problem can be decomposed into several instances of the basic non-survivable VI mapping (NSVIM) problem, whose solution permits effective sharing of the redundant resources among all failures. In this paper, we first formulate the minimum-cost SVIM problem using mixed integer linear programming (MILP). We then propose an efficient heuristic solution to NSVIM, based on which two novel heuristic SVIM algorithms called Separate Optimization with Unconstrained Mapping (SOUM) and Incremental Optimization with Constrained Mapping (IOCM). Simulations are performed to study and compare the performance of the MILP and heuristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.