Abstract
We consider the problem of protection in multilayer networks. In single-layer networks, a pair of disjoint paths can be used to provide protection for a source-destination pair. However, this approach cannot be directly applied to layered networks where disjoint paths may not always exist. In this paper, we take a new approach which is based on finding a set of paths that may not be disjoint but together will survive any single physical link failure. We consider the problem of finding the minimum number of survivable paths. In particular, we focus on two versions of this problem: one where the length of a path is restricted, and the other where the number of paths sharing a fiber is restricted. We prove that in general, finding the minimum survivable path set is NP-hard, whereas both of the restricted versions of the problem can be solved in polynomial time. We formulate the problems as Integer Linear Programs (ILPs), and use these formulations to develop heuristics and approximation algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.