Abstract
We consider the problem of survivability in multilayer networks. In single-layer networks, a pair of disjoint paths can be used to provide protection for a source–destination pair. However, this approach cannot be directly applied to layered networks where risk-disjoint paths may not always exist. In this paper, we take a new approach, which is based on finding a set of paths that may not be disjoint but together will survive any single risk. We start with two-layered communication networks, where the risks are fiber failures. We prove that in general, finding the minimum survivable path set (MSPS) is NP-hard, whereas if we restrict the length of paths the problem can be solved in polynomial time. We formulate the problem as an integer linear program (ILP), and use this formulation to develop heuristics and approximation algorithms. Moreover, we study the minimum cost survivable path set problem, where the cost is the number of fibers used, and thus, nonadditive. Finally, we generalize the survivability problem to the networks with more than two layers. By applying our algorithms for survivable path set, we assess the survivability of communication networks that operate relying on power from a power grid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.