Abstract

AbstractThe Cassini Plasma Spectrometer instrument gathered thermal ion data at Saturn from 2004 to 2012, predominantly observing water group ions and protons. Plasma parameters, with uncertainties, for those two ion species are derived using a forward model of anisotropic convected Maxwellians moving at a shared velocity. The resulting data set is filtered by various selection criteria to produce a survey of plasma parameters derived within 10° of the equator at radial distances of 5.5 to 30 RS (1 RS = Saturn's radius). The previous 2008 work used a simpler method and had just 150 records over 5 orbits; this comprehensive survey has 9736 records over all 9 years. We present the results of this survey and compare them with a previous survey derived from numerical moments, highlighting the differences between the reported densities and temperatures from the two methods. Radial profiles of the plasma parameters in the inner and middle magnetospheres out to ≈22RS are stable year by year, but variable at distances larger than 23 RS near the magnetopause. New results include proton densities increasing in the near magnetopause region, suggestive of plasma mixing; evidence for the global electric field in Saturn's inner magnetosphere extends out to ≈15RS; no evidence for supercorotating plasma nor the middle magnetosphere “plasma cam” feature is present; the thermal plasma β is found to exceed unity at equatorial distances greater than 15 RS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.