Abstract

AbstractMeasurements in Saturn's equatorial magnetosphere from mid‐2004 through 2013 made by Cassini's charge‐energy‐mass ion spectrometer indicate the presence of a rare, suprathermal (83–167 keV/e) ion species at Saturn with mass ~56 amu that is likely Fe+. The abundance of Fe+ is only ~10−4 relative to that of W+ (O+, OH+, H2O+, and H3O+), the water group ions which dominate Saturn's suprathermal and thermal ions along with H+ and H2+. The radial variation of the Fe+ partial number density (PND) is distinctly different from that of W+ and most ions that comprise Saturn's suprathermal ion populations which, unlike thermal energy plasma ions, typically have a prominent PND peak at ~8–9 Rs (1 Saturn radius, Rs = 60,268 km). In contrast, the Fe+ PND decreases more or less exponentially from ~4 to ~20 Rs, our study's inner and outer limits. Fe+ may originate from metal layers produced by meteoric ablation near Saturn's mesosphere‐ionosphere boundary and/or possibly impacted interplanetary dust particles or the Saturn system's dark material in the main rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.