Abstract

BackgroundDuckweeds, i.e., members of the Lemnoideae family, are amongst the smallest aquatic flowering plants. Their high growth rate, aquatic habit and suitability for bio-remediation make them strong candidates for biomass production. Duckweeds have been studied for their potential as feedstocks for bioethanol production; however, less is known about their ability to accumulate reduced carbon as fatty acids (FA) and oil.ResultsTotal FA profiles of thirty duckweed species were analysed to assess the natural diversity within the Lemnoideae. Total FA content varied between 4.6% and 14.2% of dry weight whereas triacylglycerol (TAG) levels varied between 0.02% and 0.15% of dry weight. Three FA, 16:0 (palmitic), 18:2Δ9,12 (Linoleic acid, or LN) and 18:3Δ9,12,15 (α-linolenic acid, or ALA) comprise more than 80% of total duckweed FA. Seven Lemna and two Wolffiela species also accumulate polyunsaturated FA containing Δ6-double bonds, i.e., GLA and SDA. Relative to total FA, TAG is enriched in saturated FA and deficient in polyunsaturated FA, and only five Lemna species accumulate Δ6-FA in their TAG. A putative Δ6-desaturase designated LgDes, with homology to a family of front-end Δ6-FA and Δ8-spingolipid desaturases, was identified in the assembled DNA sequence of Lemna gibba. Expression of a synthetic LgDes gene in Nicotiana benthamiana resulted in the accumulation of GLA and SDA, confirming it specifies a Δ6-desaturase.ConclusionsTotal accumulation of FA varies three-fold across the 30 species of Lemnoideae surveyed. Nine species contain GLA and SDA which are synthesized by a Δ6 front-end desaturase, but FA composition is otherwise similar. TAG accumulates up to 0.15% of total dry weight, comparable to levels found in the leaves of terrestrial plants. Polyunsaturated FA is underrepresented in TAG, and the Δ6-FA GLA and SDA are found in the TAG of only five of the nine Lemna species that produce them. When present, GLA is enriched and SDA diminished relative to their abundance in the total FA pool.

Highlights

  • Duckweeds, i.e., members of the Lemnoideae family, are amongst the smallest aquatic flowering plants

  • Extracted lipids from each sample were converted to fatty acids (FA) methyl esters (FAMEs) which were separated by capillary gas chromatography-coupled mass spectrometry (GC-MS) to obtain the composition of different FA species

  • The survey of 30 species duckweeds showed total FA content varied approximately 3-fold between 4.6% and 14.2% of dry weight; there is surprisingly low variability in FA composition between the 30 duckweed species surveyed, with three FA, palmitic, LN and ALA comprising more than 80% of total duckweed FA

Read more

Summary

Introduction

I.e., members of the Lemnoideae family, are amongst the smallest aquatic flowering plants. Duckweeds are the smallest known aquatic flowering plants [1] These monocotyledonous plants family are in the family Lemnoideae which contains five genera: Lemna, Spirodela, Wolffia, Wolffiela and Landoltia, encompassing more than 38 different species geographically distributed around the globe [2]. Recent research has focused on the ability of duckweed to produce starch and protein, for instance, Spirodela polyrhiza has been shown to accumulate up to 20% dry weight as starch when grown on pig effluent [5]. These traits have made duckweed a desirable candidate for biomass production. Lemna gibba has been engineered to produce monoclonal antibodies [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call