Abstract

Drug delivery of antibiotics with magnetic nanoparticles improved by coating metals such as gold and silver has recently been studied. This work describe a simple method to synthesize modified magnetic nanoparticles which have high ability to modify the customary formulation of antibiotics such as sulfamethoxazole (SMX) and pursuant study of adsorption-desorption (release) of this drug. These synthesized nanoparticles were characterized by different methods, including field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and mapping, Fourier-transform infrared spectroscopy, X-ray diffraction, vibrating-sample magnetometry, thermogravimetric analysis and zeta potential test. Present assay showed a well correlation with the introduced carrier for the drug. Also the hypothesis were proved by some adsorption isotherm models and drug kinetics studies of carriers with different drug release kinetics models. This study confirmed the adsorption isotherm models and kinetics of drug sorbate are Temkin and Pseudo-First-Order Lagergren models, respectively; the kinetics of drug release from this carrier is based on Zero-Order model. The values of MIC in antibacterial test for pure SMX and SMX conjugated nanoparticles against Escherichia coli were calculated to be 14 and 2.5 μg/mL, respectively, and these values against Staphylococcus aureus were 24 and 1.25 μg/mL, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.