Abstract

ABSTRACT In this study, we reported the first long-term monitoring of SARS-CoV-2 in wastewater in Mainland China from November 2021 to October 2023. The city of Shijiazhuang was employed for this case study. We developed a triple reverse transcription droplet digital PCR (RT-ddPCR) method using triple primer-probes for simultaneous detection of the N1 gene, E gene, and Pepper mild mottle virus (PMMoV) to achieve accurate quantification of SARS-CoV-2 RNA in wastewater. Both the RT-ddPCR method and the commercial multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) method were implemented for the detection of SARS-CoV-2 in wastewater in Shijiazhuang City over a 24-month period. Results showed that SARS-CoV-2 was detected for the first time in the wastewater of Shijiazhuang City on 10 November 2022. The peak of COVID-19 cases occurred in the middle of December 2022, when the concentration of SARS-CoV-2 in the wastewater was highest. The trend of virus concentration increases and decreases forming a “long-tailed” shape in the COVID-19 outbreak and recession cycle. The results indicated that both multiplex RT-ddPCR and RT-qPCR are effective in detecting SARS-CoV-2 in wastewater, but RT-ddPCR is capable of detecting low concentrations of SARS-CoV-2 in wastewater which is more efficient. The SARS-CoV-2 abundance in wastewater is correlated to clinical data, outlining the public health utility of this work. Highlights First long-term monitoring of SARS-CoV-2 in wastewater in Mainland China COVID-19 outbreak was tracked in Shijiazhuang City from outbreak to containment Wastewater was monitored simultaneously using RT-ddPCR and RT-qPCR methods Triple primer-probe RT-ddPCR detects N1 and E genes of SARS-CoV-2 and PMMoV

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.