Abstract
Improving road safety requires accurate network screening methods to identify and prioritize sites in order to maximize the effectiveness of implemented countermeasures. In screening, hotspots are commonly identified using statistical models and ranking criteria derived from observed crash data. However, collision databases are subject to errors, omissions, and underreporting. More importantly, crash-based methods are reactive and require years of crash data. With the arrival of new technologies including Global Positioning System (GPS) trajectory data, proactive surrogate safety methods have gained popularity as an alternative approach for screening. GPS-enabled smartphones can collect reliable and spatio-temporally rich driving data from regular drivers using an inexpensive, simple, and user-friendly tool. However, few studies to date have analyzed large volumes of smartphone GPS data and considered surrogate-safety modelling techniques for network screening. The purpose of this paper is to propose a surrogate safety screening approach based on smartphone GPS data and a Full Bayesian modelling framework. After processing crash data and GPS data collected in Quebec City, Canada, several surrogate safety measures (SSMs), including vehicle manoeuvres (hard braking) and measures of traffic flow (congestion, average speed, and speed variation), were extracted. Then, spatial crash frequency models incorporating the extracted SSMs were proposed and validated. A Latent Gaussian Spatial Model was estimated using the Integrated Nested Laplace Approximation (INLA) technique. While the INLA Negative Binomial models outperformed alternative models, incorporating spatial correlations provided the greatest improvement in model fit. Relationships between SSMs and crash frequency established in previous studies were generally supported by the modelling results. For example, hard braking, congestion, and speed variation were all positively linked to crash counts at the intersection level. Network screening based on SSMs presents a substantial contribution to the field of road safety and works towards the elimination of crash data in evaluation and monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.