Abstract
A surrogate model is introduced for identifying the optimal remediation strategy for Dense Non-Aqueous Phase Liquids (DNAPL)-contaminated aquifers. A Latin hypercube sampling (LHS) method was used to collect data in the feasible region for input variables. A surrogate model of the multi-phase flow simulation model was developed using a radial basis function artificial neural network (RBFANN). The developed model was applied to a perchloroethylene (PCE)-contaminated aquifer remediation optimization problem. The relative errors of the average PCE removal rates between the surrogate model and simulation model for 10 validation samples were lower than 5%, which is high approximation accuracy. A comparison of the surrogate-based simulation optimization model and a conventional simulation optimization model indicated that RBFANN surrogate model developed in this paper considerably reduced the computational burden of simulation optimization processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.