Abstract
In the present study, we sought to develop/characterize the pain profile of a rat model of surgically induced osteoarthritis (OA). OA was surgically induced in male Lewis rats (200-225 g) by transection of the medial collateral ligament and medial meniscus of the femoro-tibial joint. In order to characterize the pain profile, animals were assessed for a change in hind paw weight distribution (HPWD), development of mechanical allodynia, and the presence of thermal and mechanical hyperalgesia. Rofecoxib and gabapentin were examined for their ability to decrease change in weight distribution and tactile allodynia. Transection of the medial collateral ligament and medial meniscus of male Lewis rats resulted in rapid (<3 days) changes in hind paw weight bearing and the development of tactile allodynia (secondary hyperalgesia). There was, however, no appreciable effect on thermal hyperalgesia or mechanical hyperalgesia. Treatment with a single dose of rofecoxib (10 mg/kg, PO, day 21 post surgery) or gabapentin (100mg/kg, PO, day 21 post surgery) significantly attenuated the change in HPWD, however, only gabapentin significantly decreased tactile allodynia. The rat medial meniscal tear (MMT) model mimics both nociceptive and neuropathic OA pain and is responsive to both a selective cylooxygenase-2 (COX-2) inhibitor commonly utilized for OA pain (rofecoxib) and a widely prescribed drug for neuropathic pain (gabapentin). The rat MMT model may therefore represent a predictive tool for the development of pharmacologic interventions for the treatment of the symptoms associated with OA.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have