Abstract

This paper presents a tool-pose-informed variable center morphological polar transform to enhance segmentation of endoscopic images. The representation, while not loss-less, transforms rigid tool shapes into morphologies consistently more rectangular that may be more amenable to image segmentation networks. The proposed method was evaluated using the U-Net convolutional neural network, and the input images from endoscopy were represented in one of the four different coordinate formats (1) the original rectangular image representation, (2) the morphological polar coordinate transform, (3) the proposed variable center transform about the tool-tip pixel and (4) the proposed variable center transform about the tool vanishing point pixel. Previous work relied on the observations that endoscopic images typically exhibit unused border regions with content in the shape of a circle (since the image sensor is designed to be larger than the image circle to maximize available visual information in the constrained environment) and that the region of interest (ROI) was most ideally near the endoscopic image center. That work sought an intelligent method for, given an input image, carefully selecting between methods (1) and (2) for best image segmentation prediction. In this extension, the image center reference constraint for polar transformation in method (2) is relaxed via the development of a variable center morphological transformation. Transform center selection leads to different spatial distributions of image loss, and the transform-center location can be informed by robot kinematic model and endoscopic image data. In particular, this work is examined using the tool-tip and tool vanishing point on the image plane as candidate centers. The experiments were conducted for each of the four image representations using a data set of 8360 endoscopic images from real sinus surgery. The segmentation performance was evaluated with standard metrics, and some insight about loss and tool location effects on performance are provided. Overall, the results are promising, showing that selecting a transform center based on tool shape features using the proposed method can improve segmentation performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.