Abstract

By virtue of high theoretical capacity and appropriate lithiation potential, phosphorus is considered as a prospective next-generation anode material for lithium-ion batteries. However, there are some problems hampering its practical application, such as low ionic conductivity and serious volume expansion. Herein, we demonstrated an in situ preoxidation strategy to build a oxidation function layer at phosphorus particle. The oxide layer not only acted as a protective layer to prolong the storage time of phosphorus anode in air but also carbonized N-methyl pyrrolidone and poly (vinylidene fluoride), strengthening the interfacial interaction between phosphorus particles and binder. The oxide layer further induced the formation of a stable solid electrolyte interface with high lithium-ion conductivity. The oxidized P-CNT maintained high specific capacity of 1306 mAh g-1 and 89% capacity after 100 cycles, much higher than that of pristine P-CNT (17.1%). The strategy of in situ oxidation is facile and conducive to the practical application of phosphorus-based anodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call