Abstract

The development of a controlled-release dosage form of antifungals is of crucial importance in view of the side-effects of conventional oral and intravenous treatments of Sporotrichosis. In this study, systems composed of polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol (PPG-5-CETETH-20) as a surfactant, oleic acid as an oil phase, and water were developed as a possible fluconazole transdermal drug delivery system. The systems were characterised by polarised light microscopy (PLM), SAXS, and rheological analysis, followed by cellular and histological analyses, in vitro release assays, and ex vivo skin permeation and retention studies using porcine ear tissue and a Franz diffusion cell. PLM and SAXS results indicated that the mixtures of surfactant, oil and water formed micellar and lamellar phases. The incorporation of fluconazole in these systems was greater than in water and conventional dosage forms. Micellar systems behave as Newtonian fluids, being more viscous than elastic in rheological analysis, and lamellar phases behave as pseudoplastic fluids with high elastic moduli. In vitro and in vivo biological assays showed that the formulations did not affect normal cell macrophages and did not promote skin irritation. The release profile indicated that fluconazole could be released in a controlled manner. It was found that the systems enhanced drug permeation and skin retention by changing only the composition of the components in the formulations. Therefore, PPG-5-CETETH-20- based systems have great potential as transdermal systems with different structural and rheological characteristics for Sporotrichosis treatment using antifungal drugs.

Highlights

  • Sporotrichosis is the most prevalent subcutaneous mycosis and is caused by a dimorphic fungus, Sporothrix schenckii, which has been isolated from soil, decaying vegetation, plants, timber, hay, and moss

  • The systems were characterised by polarised light microscopy (PLM), small-angle X-ray scattering (SAXS), and rheological measurements

  • The composition of the formulations was chosen based on previous studies in which the ternary phase diagram of oleic acid, PPG-5

Read more

Summary

Introduction

Sporotrichosis is the most prevalent subcutaneous mycosis and is caused by a dimorphic fungus, Sporothrix schenckii, which has been isolated from soil, decaying vegetation, plants, timber, hay, and moss. The disease usually begins after trauma that inoculates the microorganism into the skin and subcutaneous tissue [1]. Sporotrichosis has a worldwide distribution, it is more frequent in tropical and subtropical areas with warm and humid climates. Several modalities have been used to treat cutaneous Sporotrichosis, such as local hyperthermia, cryotherapy, and antifungals (potassium iodide, itraconazol, amphotericin B, terbina and fluconazole), which are mainly administered by intravenous or oral route for a systemic effect [2,3]. Most of them cause side-effects, including gastric irritation, diarrhoea, nausea, vomiting and stomach pain, hypothyroidism, fever, chills, headache, impairment of renal function, and anaemia [3]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.