Abstract
Ordered mesoporous silicas with 2-dimensional hexagonal arrays of closed cylindrical pores were synthesized via templating with block copolymer surfactant followed by calcination at appropriately high temperatures. Precursors to closed-pore silicas, including SBA-15 silicas and organosilicas, were selected based on the existence of narrow passages to the mesopores. The increase in calcination temperature to 800–950 °C led to a dramatic decrease in nitrogen uptake by the materials, indicating the loss of accessible mesopores, whereas small-angle X-ray scattering (SAXS) indicated no major structural changes other than the framework shrinkage. Since SAXS patterns for ordered mesoporous materials are related to periodic arrays of mesopores, the existence of closed mesopores was evident, as additionally confirmed by TEM. The formation of closed-pore silicas was demonstrated for ultralarge-pore SBA-15 and large-pore phenylene-bridged periodic mesoporous organosilicas. The increase in the amount of tetraethyl orthosilicate in standard SBA-15 synthesis also allowed us to observe the thermally induced pore closing. It is hypothesized that the presence of porous plugs in the cylindrical mesopores and/or caps at their ends was responsible for the propensity to the pore closing at sufficiently high temperatures. The observed behavior is likely to be relevant to a variety of silicas and organosilicas with cylindrical mesopores.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have