Abstract

Understanding the mobility, retention, and fate of carbon dots (CDs) is critical for the risk management of this emerging carbon material. However, the influences of surfactants on CDs' transport through subsurface media are still poorly understood. Herein, column experiments were conducted to explore the different influences of an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB), on the CDs' transport in water-saturated soil. In the Na+ background electrolyte, both surfactants facilitated the transport of CDs at pH 7.0. The trend stemmed from steric hindrance, a decline in the straining effect, and competitive deposition between CDs and surfactant molecules. Additionally, SDBS increased the electrostatic repulsion of CDs and soil. Interestingly, in the divalent cation background electrolytes (i.e., Ca2+ or Cu2+), SDBS suppressed CDs' mobility, whereas CTAB had the opposite effect. The transport-inhibited effect of SDBS was mainly due to anionic surfactant ion (DBS-) precipitation with metal cations and the formation of adsorbed SDBS-Cu2+/Ca2+-CDs complexes. The enhanced effect of CTAB resulted from the CTAB coating on soil grains, which suppressed the cation bridging between CDs and soil. Furthermore, the magnitude of the SDBS promotion effect was pH-dependent. Surprisingly, CTAB could inhibit CDs' mobility at pH 9.0, owing to the binding cationic surfactant's strong hydrophobicity effect on the soil surface. Moreover, the experimental breakthrough curves of CDs were well described using a two-site transport model. Overall, the observations obtained from this study shed light on the relative mobility of CDs with different surfactants in typical groundwater conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call