Abstract

A new, facile and generally applicable synthesis of functionalized gold nanoparticles is presented. It is based on the surfactant-free generation of weakly stabilized nanoparticles by the reduction of HAuCl4 with sodium naphthalenide in diglyme. These nanoparticles were found to lack long-term stability. However, stabilization in both unpolar and polar solvents could straightforwardly be achieved by subsequent addition of various capping ligands. The resulting ligand-capped gold nanoparticles were investigated by TEM microscopy, UV-vis, and FT-IR spectroscopy. Particle core size can be tuned by the amount of reduction agent. The strict separation of the reduction step and the functionalization step in this one-pot synthesis offers an easy and fast access to highly functionalized gold nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call