Abstract

Aqueous surfactant dispersion is the most typical starting step to functionalize materials consisting of carbon nanotubes, but the effects of surfactants on the electronic properties are still unclear. Here we report how the functional groups of surfactants affect the electronic properties of carbon nanotube films. Using spectroscopic and thermoelectric characterization, we demonstrate that anionic and non-ionic surfactants contribute to the formation of p-type and n-type carbon nanotubes, respectively. Additionally, p-type doping with oxygen adsorption is found to compete with surfactants' doping. These findings are useful for designing the srarting carbon nanotube materials exhibiting desirable electronic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.