Abstract

ABSTRACTPolystyrene (PSt) or poly(vinylbenzyl chloride) (PVBC) crosslinked with divinylbenzyl (DVB) materials were synthesized through free radical polymerization into templates formed by the surfactant polyoxyethylene (4) lauryl ether (Brij‐30). The chemical composition of the final products was verified through attenuated total reflectance infrared spectroscopy (ATR‐IR) and the thermal behavior was investigated through thermogravimetric analysis (TGA). Depending on the organization of Brij‐30 in aqueous solution, three characteristic structures, namely spherical nanoparticles, platelet‐like objects and three‐dimensional networks, were identified through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The spherical nanoparticles and the platelet‐like objects form rather stable dispersions, especially in aqueous surfactant solutions, as exemplified by the evolution of the turbidity of the PSt‐based materials, using sodium dodecyl sulfate as surfactant. All materials retain their integrity even after thermal treatment at high temperature (∼200–250°C). The benzyl chloride group of the PVBC‐based materials offers a significant potential for further elaboration and practical applications, since they can be further functionalized while retaining their integrity. This potential is demonstrated here through hydrolysis to obtain hydroxyl‐functionalized three‐dimensional networks. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43297.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call