Abstract

The sonication-driven dispersion of multi-wall carbon nanotubes (MWCNTs) in aqueous surfactant solution has been monitored by UV–vis spectroscopy and transmission electron microscopy. Time dependent sonication experiments reveal that the maximum achievable dispersion of MWCNTs corresponds to the maximum UV–vis absorbance of the solution. With higher surfactant concentration the dispersion rate of MWCNTs increases and less total sonication energy is required to achieve maximum dispersion. Dispersion of higher MWCNT concentrations requires higher total sonication energy. For effective dispersion the minimum weight ratio of surfactant to MWCNTs is 1.5–1. The surfactant molecules are adsorbed on the surface of the MWCNTs and prevent re-aggregation of MWCNTs so that a colloidal stability of MWCNT dispersions could be maintained for several months. The maximum concentration of MWCNTs that can be homogeneously dispersed in aqueous solution is about 1.4wt%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call