Abstract

The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was addressed by sonication and non-covalent surface functionalization of graphite nanoplatelets (GNPs) using two types of surfactant: anionic (sodium dodecyl benzene sulfate (SDBS)) and non-ionic polymeric (ethyl cellulose (EC)). After colloidal mixing with Al powder, consolidation was performed at two sintering temperatures (550 and 620°C). The structure, density, mechanical and wear properties of the nanocomposite samples were investigated and compared with a pure Al and a pure GNPs/Al nanocomposite sample. Noticeably, EC-based 0.5wt% GNPs/Al samples showed the highest increment of 31% increase in hardness with reduced wear rate of 98.25% at 620°C, while a 22% increase in hardness with reduced wear rate of 96.98% at 550°C was observed, as compared to pure Al. Microstructural analysis and the overall results validate the use of EC-based GNPs/Al nanocomposites as they performed better than pure Al and pure GNPs/Al nanocomposite at both sintering temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call