Abstract
We prove that finite area isolated singularities of surfaces with constant positive curvature K>0 in R3 are removable singularities, branch points or immersed conical singularities. We describe the space of immersed conical singularities of such surfaces in terms of the class of real analytic closed locally strictly convex curves in S2 with admissible cusp singularities, characterizing when the singularity is actually embedded. In the global setting, we describe the space of peaked spheres in R3, i.e. compact convex surfaces of constant curvature K>0 with a finite number of singularities, and give applications to harmonic maps and constant mean curvature surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.