Abstract
A surface in E3 is called parallel to the surface M if it consists of the ends of constant length segments, laid on the normals to the surfaces M at points of this surface. The tangent planes at the corresponding points will be parallel. For surfaces in E3 the theorem of Bonnet holds: for any surface M that has constant positive Gaussian curvature, there exists a surface parallel to it with a constant mean curvature. Using Bonnet's theorem for a surfaces of revolution of constant positive Gaussian curvature, surfaces of constant mean curvature are constructed. It is proved that they are also surfaces of revolution. A family of plane curvature lines (meridians) is described by means of elliptic integrals. The surfaces of constant Gaussian curvature are also described by means of elliptic integrals. Using the mathematical software package, the surfaces under consideration are constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.