Abstract

The surface modification of cellulose nanofibers (CNFs) using a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/sodium bromide (NaBr)/sodium hypochlorite (NaClO) system was successful in improving their hydrophilicity. Following that, we fabricated hydrogels containing carboxylated cellulose nanofibers (c-CNFs) and loaded them with polyhexamethylene biguanide (PHMB) using a physical crosslinking method, aiming for efficient antimicrobial uses. The morphological and physicochemical properties of all hydrogel formulations were characterized, and the results revealed that the 7% c-CNFs-2 h loaded with PHMB formulation exhibited desirable characteristics such as regular shape, high porosity, good mechanical properties, suitable gel content, and a good maximum swelling degree. The successful integration of PHMB into the c-CNF matrix was confirmed by FTIR analysis. Furthermore, the 7% c-CNFs-2 h loaded with the PHMB formulation demonstrated PHMB contents exceeding 80% and exhibited a prolonged drug release pattern for up to 3 days. Moreover, this formulation displayed antibacterial activity against S. aureus and P. aeruginosa. In conclusion, the novel approach of c-CNF hydrogels loaded with PHMB through physical crosslinking shows promise as a potential system for prolonged drug release in topical drug delivery while also exhibiting excellent antibacterial activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.