Abstract
Using extensive Monte Carlo simulations we have studied phase transitions in a fcc model with antiferromagnetic nearest-neighbor couplings $J$ in the presence of different free surfaces which lead either to surface-induced order or to surface-induced disorder. Our model is a prototype for CuAu-type ordering alloys and shows a strong first-order bulk transition at a temperature $\frac{k{T}_{\mathrm{cb}}}{|J|}=1.738005(50)$. For free (100) surfaces, we find a continuous surface transition at a temperature ${T}_{\mathrm{cs}}>{T}_{\mathrm{cb}}$ exhibiting critical exponents of the two-dimensional Ising model. Surface-induced ordering occurs as the temperature approaches ${T}_{\mathrm{cb}}$ and the surface excess order and surface excess energy diverges logarithmically. For a free (111) surface, the surface order vanishes continuously at ${T}_{\mathrm{cb}}$ accompanied by surface-induced disorder (SID). In addition to a logarithmic divergence of the excess quantities of order and energy, we find further critical exponents which confirm the actual theory of SID and critical wetting and which can be understood in terms of rough interfaces. For both cases of free surfaces, the asymptotic behavior of the squared interfacial width shows the expected logarithmic divergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.