Abstract

In systems displaying a bulk first-order transition the order parameter may vanish continuously at a free surface, a phenomenon which is called surface-induced disorder. In the presence of surface-induced disorder the correlation lengths, parallel and perpendicular to the surface, diverge at the bulk transition point. In this way the surface induces an anisotropic power-law singular behavior for some bulk quantities. For example in a finite system of transverse linear size L, the response functions diverge as L^{(d-1)z+1}, where d is the dimension of the system and z is the anisotropy exponent. We present a general scaling picture for this anisotropic discontinuity fixed point. Our phenomenological results are confronted with analytical and numerical calculations on the 2D q-state Potts model in the large-q limit. The scaling results are demonstrated to apply also for the same model with a layered, Fibonacci-type modulation of the couplings for which the anisotropy exponent is a continuous function of the strength of the quasiperiodic perturbation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.