Abstract
Engineering the surface and interface of nanomaterials is critical for enhancing interfacial compatibility and dispersion stability in liquid. In this paper, we report dialkyldithiophosphate (DDP) functionalized zirconium-based metal organic frameworks (Zr-MOFs) nanoparticles as lubricating oil additives that can achieve friction and wear reduction and antioxidation. DDP molecules were coordinatively grafted onto the MOFs nanoparticles (nanoMOFs) using ultrasonication assisted self-assembly. Compared with pristine nanoMOFs, dispersity of the DDP-modified ones was significantly improved in both organic solvents and base oil. Reduction in both coefficient of friction and wear volume was achieved by adding Zr-MOFs@DDP in oil, and their oxidation induction time was expanded much longer than that of the base oil. Additionally, the lubricating and antioxidative performance of the Zr-MOFs@DDP in oil were correlated with their concentration and BET surface area respectively. Our results establish surface-functionalized nanoMOFs as oil additives that can support friction and wear reduction and improve the antioxidative performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.