Abstract

Surface-enhanced Raman spectroscopy (SERS) is used to identify the biochemical changes associated with the antifungal activities of selenium and zinc organometallic complexes against Aspergillus niger fungus. These biochemical changes identified in the form of SERS peaks can help to understand the mechanism of action of these antifungal agents which is important for development of new antifungal drugs. The SERS spectral changes indicate the denaturation and conformational changes of proteins and fungal cell wall decomposition in complex exposed fungal samples. The SERS spectra of these organometallic complexes exposed fungi are analyzed by using statistical tools like principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA). PCA is employed to differentiate the SERS spectra of fungal samples exposed to ligands and complexes. The PLS-DA discriminated different groups of spectra with 99.8% sensitivity, 100% specificity, 98% accuracy and 86 % area under receiver operating characteristic (AUROC) curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call