Abstract

ABSTRACT Silver nanorod arrays with different lengths fabricated by oblique angle deposition at various vapor deposition angles have been studied systematically by surface-enhanced Raman scattering (SERS). The SERS response of those substrates strongly depends on the length of the nanorods and the deposition angle, and the highest SERS enhancement factor can reach close to 10 9 . The reflections of the support su bstrate where the Ag nanorods are grown directly affect the SERS enhancement. In addition, the SERS response strongly depends on the incident configuration of the excitation beam, such as polarization and incident angle. We also find that the probe molecules on the side surface of nanorods contribute the most to the SERS intensity. This is due to the anisotropic optical properties of nanorods and the thickness of the nanorods. This study demonstrates that the Ag nanorod arrays are highly sensitive, uniform, and stable SERS substrates, and its SERS mechanism depends on the complex nanorod film geometry. Keywords: Ag nanorods, oblique an gle deposition, surface enhanced Raman sca ttering, anisotropic optical properties

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.