Abstract

Heterogeneously activated peroxymonosulfate (PMS)-based advanced oxidation technologies (AOTs) have received increasing attention in contaminated water remediation. However, PMS activation by reduced clay minerals (e.g., reduced Fe-bearing smectite clays) has rarely been explored. Herein, PMS decomposition by reduced Fe-bearing smectite clays was investigated, and the hydroxyl radical (OH) and sulfate radical (SO4−) formation mechanisms were elucidated. Reduced nontronite NAu-2 (R-NAu-2) activated PMS efficiently to induce rapid degradation of diethyl phthalate (DEP) within 30 s. Mössbauer spectroscopy, FTIR and XPS analyses substantiated that distorted trans-coordinated Fe(II)Fe(II)Fe(II)OH entities were mainly responsible for rapid electron transfer to regenerate clay surface Fe(II) for PMS activation. Chemical probe, radical quenching, and electron paramagnetic resonance (EPR) results confirmed that OH and SO4− were mainly bound to the clay surface rather than in bulk solution, which resulted in the rapid degradation of organic compounds such as DEP, sulfamethoxazole, phenol, chlortetracycline and benzoic acid. Anions such as Cl− and NO3− had a limited effect on DEP degradation, while HCO3− inhibited the DEP degradation due to the increase of reaction pH. This study provides a new PMS activation strategy using reduced Fe-bearing smectite clays that will contribute to rapid degradation of organic contaminants using PMS-based AOTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.