Abstract

The elemental and phase composition and defect structure of the surface layer on 40X steel is compared for two cases: (1) treatment by intense pulsed electron beam; (2) alloying by melting of a film–substrate (copper–40X steel) system under irradiation by intense electron pulses. The evolution of the structure in the steel’s surface layer is studied as a function of the energy density of the pulsed electron beam. Highspeed solidification and subsequent quenching of 40X steel leads to the formation of a modified layer (thickness up to 30 µm). Cell structure is formed in the surface layer; the mean cell size is increased from 240 to 500 nm with increase in energy density of the pulsed electron beam from 10 to 20 J/cm2 (ten pulses). The treatment of a film–substrate (copper–40X steel) system by intense electron pulses is accompanied by the formation of surface alloy with quenched structure, hardened by copper nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call