Abstract
We consider the propagation of surface water waves in a straight planar channel perturbed at the bottom by several thin curved tunnels and wells. We propose a method to construct non reflecting underwater topographies of this type at an arbitrary prescribed wave number. To proceed, we compute asymptotic expansions of the diffraction solutions with respect to the small parameter of the geometry taking into account the existence of boundary layer phenomena. We establish error estimates to validate the expansions using advances techniques of weighted spaces with detached asymptotics. In the process, we show the absence of trapped surface waves for perturbations small enough. This analysis furnishes asymptotic formulas for the scattering matrix and we use them to determine underwater topographies which are non-reflecting. Theoretical and numerical examples are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.