Abstract

The Reynolds-averaged equations for turbulent flow over a deep-water sinusoidal gravity wave, z = acoskx ≡ h0(x), are formulated in the wave-following coordinates ζ, η, where x = ζ, z =η + h(ζ, η), h(ζ, 0) = h0(ζ) and h is exponentially small for kη [Gt ] 1, and closed by a viscoelastic consitutive equation (a mixing-length model with relaxation). This closure is derived from Townsend's boundary-layer-evolution equation on the assumptions that: the basic velocity profile is logarithmic in η + z0, where z0 is a roughness length determined by Charnock's similarity relation; the lateral transport of turbulent energy in the perturbed flow is negligible; the dissipation length is proportional to η + z0. A counterpart of the Orr-Sommerfeld equation for the complex amplitude of the perturbation stream function is derived and used to construct a quadratic functional for the energy transfer to the wave. A corresponding Galerkin approximation that is based on independent variational approximations for outer (quasi-laminar) and inner (shear-stress) domains yields an energy-transfer parameter β that is comparable in magnitude with that of the quasi-laminar model (Miles 1957) and those calculated by Townsend (1972) and Gent & Taylor (1976) through numerical integration of the Reynolds-averaged equations. The calculated limiting values of β for very slow waves, with Charnock's relation replaced by kz0 = constant, are close to those inferred from observation but about three times the limiting values obtained through extrapolation of Townsend's results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call