Abstract
The ice shelves in the northern Antarctic Peninsula are highly sensitive to variations of temperature and have therefore served as indicators of global warming. In this study, we estimate the velocities of the ice shelves in the northern Antarctic Peninsula using co-registration of optically sensed images and correlation module (COSI-Corr) in the Environment for Visualizing Images (ENVI) based on Moderate Resolution Imaging Spectroradiometer (MODIS) images during 2000–2012, from which we conclude that the ice flow directions generally match the peninsulas pattern and the crevasse, ice flows mainly eastward into the Weddell Sea. The spatial pattern of velocity field exhibits an increasing trend from the western grounding line to the maximum at the middle part of the ice shelf front on Larsen C with a velocity of approximately 700 ma−1, and the velocity field shows relatively higher values in its southerly neighboring ice shelf (e.g. Smith Inlet). Additionally, ice flows are relatively quicker in the outer part of the ice shelf than in the inner parts. Temporal changes in surface velocities show a continuous increase from 2000 to 2012. It is worth noting that, the acceleration rate during 2000–2009 is relatively higher than that during 2009–2012, while the ice movement on the southern Larsen C and Smith Inlet shows a deceleration from 2009 to 2012.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.