Abstract

In this work, a novel allylimidazolium-bridged bis(β-cyclodextrin) chiral stationary phase was fabricated via a surface-up thiol-ene click chemistry reaction between 7-SH-β-cyclodextrin and 1-allylimidazole-β-cyclodextrin bonded on a silica surface. The structure of the allylimidazolium-bridged bis(β-cyclodextrin) chiral stationary phase was characterized by Fourier transform infrared spectra, 13 C nuclear magnetic resonance, thermogravimetric analysis, and elemental analysis. Its chiral chromatographic performances were systematically evaluated by separating 35 racemic analytes including isoxazolines, dansyl-amino acids, and flavanones under reversed-phase high-performance liquid chromatography. Compared with the corresponding bottom and top layer of the β-cyclodextrin stationary phase, the allylimidazolium-bridged bis(β-cyclodextrin) chiral stationary phase afforded significantly accentuated chiral recognition ability due to its abundant hydrogen bond sites, electrostatic interactions, and synergistic inclusion. Furthermore, the allylimidazolium-bridged bis(β-cyclodextrin) chiral stationary phase showed better enantioseparation ability compared to other reported bridged cyclodextrin stationary phases. In particular, Ar-Phs and dansyl-amino acid could be completely separated by allylimidazolium-bridged bis(β-mono-6A -deoxy-6-allylimidazolium-β-cyclodextrin chiral stationary phase) chiral stationary phase with high resolutions of 1.14-7.20 and 3.16-5.82, respectively. Molecular docking reveals that good enantioseparation ability arises from the different interaction modes and the synergistic effect of allylimidazolium-bridged bis(β-cyclodextrin) chiral stationary phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call