Abstract

This paper presents the results of an experimental stydy of the micromechanisms of fatigue crack nucleation and fatigue fracture in polysilicon MEMS Structures. The initial stages of fatigue are shown to be associated with stress-assisted surface topography evolution and the thickening of SiO2 layers that form on the unpassivated polysilicon surfaces and crack/notch faces. The differences in surface topography and oxide thickness are elucidated as functions of fatigue cycling before discussing the micromechanisms of crack growth and final fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.