Abstract
An in vitro model (Nygren et al., J Lab Clin Med 129 (1997) 35–46) was used to investigate interactions between leukocytes and four modified TiO 2-surfaces. Surface topography was measured using scanning electron microscopy and optical profilometry while Auger electron spectroscopy was used to determine surface composition and oxide thickness. The surfaces were either smooth or rough with either thin or thick oxides. All surfaces consisted of TiO 2 covered by a carbonaceous layer. The surfaces were incubated with capillary blood for time periods of between 8 min and 32 h. Immunofluorescence techniques together with computer aided image analysis and chemiluminescence technique were used to detect cell adhesion, expression of adhesion receptors and the zymosan-stimulated respiratory burst response. Leukocyte adhesion to the surfaces increased during the first hours of blood–material contact and then decreased. Polymorphonuclear granulocytes were the dominating leukocytes on all surfaces followed by monocytes. Cells adhering to rough surfaces had higher normalized expression of adhesive receptors than cells on smooth surfaces. Maximum respiratory burst response occurred earlier on the smooth than on the rough surfaces. In conclusion, topography had a greater impact than oxide thickness on most cellular reactions investigated, but the latter often had a dampening effect on the responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.