Abstract

The problem of normal waves in an inhomogeneous dielectric layer is reduced to a boundary value problem for the longitudinal components of the electromagnetic field in Sobolev spaces. Nonhomogeneous filling and entering of spectral parameter in transmission conditions lead to the necessity of special definition of solution to the problem. We formulate the definition of solution using variational relation. The variational problem is reduced to the study of an operator function. We investigate properties of the operators of the operator function needed for the analysis of its spectral properties. We prove theorem of discrete spectrum and theorem of localization of eigenvalues of the operator function on complex plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.