Abstract

We consider the problem on normal waves in an inhomogeneous waveguide structure reduced to a boundary value problem for the longitudinal components of the electromagnetic field in Sobolev spaces. The inhomogeneity of the dielectric filling and the occurrence of the spectral parameter in the transmission conditions necessitate giving a special definition of what a solution of the problem is. To find the solution, we use the variational statement of the problem. The variational problem is reduced to the study of an operator function. We study the properties of the operator function needed for the analysis of its spectral properties. Theorems on the discreteness of the spectrum and on the distribution of the characteristic numbers of the operator function on the complex plane are proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.