Abstract

The rumpled surface structure and thermal lattice vibrations of KI(001) and RbI(001) were measured directly by high-resolution medium energy ion scattering (MEIS). The relaxation of interlayer distance between the top and second layer and the rumpling of the top and second layers were determined using the ion shadowing effect with an accuracy of 0.01 Å. From the displaced lattice positions determined above, we derived the dipole moments of the top- and second-layer ions self-consistently employing the polarizabilities estimated from the optical refractive index combined with the Clausius–Mossotti relation. The balance between a short-range force and a long-range Coulombic one made it possible to judge the applicability of the short-range pair potentials proposed so far. We also determined the root-mean-square (rms) thermal vibration amplitudes of the bulk and the top-layer ions together with the correlations of the ions in the [001] and [101] strings by taking various kinds of scattering geometries. The results obtained were compared with those calculated from the molecular dynamics (MD) simulations based on a classical model using the dipole moments determined above and the Born–Mayer type pair potential. The present MEIS results are in overall agreement with the MD simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call