Abstract

Recently much attention has been paid to bioactive filler-resin composite cements because they can solidify in a few minutes to give high mechanical strengths and they can bond to living bone. In this study the dependence on resin of apatite-forming ability in simulated body fluid (SBF) was investigated for the composite cements of bioactive CaO-SiO2-P2O5-CaF2 glass with polymethyl methacrylate (PMMA) or bisphenol-a-glycidyl methacrylate/triethyleneglycol (Bis-GMA/TEGDMA) resin. The PMMA-containing composite cement did not show the apatite-forming ability in SBF because the reaction of the glass grains with SBF was inhibited due to the complete covering of the grains with PMMA. To the contrary, the Bis-GMA/TEGDMA-containing cement exhibited high apatite-forming ability in SBF; these monomers significantly dissolved from the composite surface into SBF, causing a direct exposure of the glass grains to SBF to convert into silica gel. It is assumed that thus formed silica gels, and the silicate ions that were dissolved and adsorbed onto the composite surface, induced the apatite nucleation between the spaces of the glass grains and on the composite surface, respectively. A continuous bone-like apatite layer was formed on the top surface of the glass-Bis-GMA/TEGDMA composite cement in a short period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.