Abstract
Multi-probe instruments based on scanning tunnelling microscopy (STM) are becoming increasingly common for their ability to perform nano- to atomic-scale investigations of nanostructures, surfaces and in situ reactions. A common configuration is the four-probe STM often coupled with in situ scanning electron microscopy (SEM) that allows precise positioning of the probes onto surfaces and nanostructures enabling electrical and scanning experiments to be performed on highly localised regions of the sample. In this paper, we assess the sensitivity of four-probe STM for in-line resistivity measurements of the bulk ZnO surface. The measurements allow comparisons to established models that are used to relate light plasma treatments (O and H) of the surfaces to the resistivity measurements. The results are correlated to x-ray photoelectron spectroscopy (XPS) and show that four-probe STM can detect changes in surface and bulk conduction mechanisms that are beyond conventional monochromatic XPS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.