Abstract
The surface behavior and properties of several reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BO8EO90BO8, BO12EO227BO12, BO14EO378BO14, BO20EO411BO20, and BO21EO385BO21 at the air/water interface have been analyzed by drop tensiometry, Langmuir film balance, and atomic force microscopy (AFM). The kinetic adsorption process of block copolymer chains at the air/water interface is a diffusion-controlled process at short times. Structural rearrangements of the copolymer backbones are progressively more important as the adsorption carries on. The adsorption layers formed at the interface display evident solid-like behavior in the whole range of frequencies analyzed even at the lowest frequencies used probably as a result of the interconnection between hydrophobic ends of polymeric chains. All the copolymer display adsorption isotherm profiles are composed of four different regions in which the different characteristic regimes (“pancake”, mushroom”, “brush”, and collaps...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.