Abstract

Ordered large-pore organosilicas with isocyanurate bridging groups were synthesized via co-condensation of tetraethyl orthosilicate (TEOS) and tris[3-(trimethoxysilyl)propyl]isocyanurate (ICS) in the presence of poly(ethylene oxide)–poly(butylene oxide)–poly(ethylene oxide) (EO 39BO 47EO 39) B50-6600 template under acidic conditions. It was shown that the extraction of the B60-5500 triblock copolymer with acidified ethanol solution was insufficient to remove completely the template; however, calcination of as-synthesized and extracted samples under air atmosphere at 200 °C, 250 °C and 300 °C caused not only the removal of the polymer but also a substantial decomposition of the ICS groups. In contrast, the heat treatment of extracted organosilicas at 360 °C in flowing nitrogen was able to fully remove the residual template without degradation of the ICS bridging groups. Characterization of the resulting materials by small angle X-ray scattering (SAXS) and X-ray powder diffraction (XRD) revealed that isocyanurate-containing organosilicas have a body-centered cubic symmetry ( Im3m). Argon adsorption–desorption isotherms of these organosilicas revealed cage-like mesopores, high surface areas and large pore volumes. The diameters of spherical cages were found to be very uniform in the range of 12–14 nm. A complete removal of triblock copolymer was confirmed by high-resolution thermogravimetry (TG), Fourier transform infrared spectroscopy (FT-IR) and CHNS elemental analysis (EA). The latter showed that the isocyanurate rings are intact in the framework and their loading is up to 1 mmol g −1. Moreover, these organosilicas were also synthesized using low acid concentration, double amount of polymer and sodium chloride; in this case the template was completely extracted and there was no need for additional heat treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.