Abstract

A challenge remains in achieving adequate surface roughness of SLM fabricated interior channels, which is crucial for fuel delivery in the space industry. This study investigated the surface roughness of interior fine flow channels (1 mm diameter) embedded in SLM fabricated TC4 alloy space components. A machine learning approach identified layer thickness as a significant factor affecting interior channel surface roughness, with an importance score of 1.184, followed by scan speed and laser power with scores of 0.758 and 0.512, respectively. The roughness resulted from thin layer thickness of 20 µm, predominantly formed through powder adherence, while from thicker layer of 50 µm, the roughness was mainly due to the stair step effect. Slow scan speeds increased melt pools solidification time at roof overhangs, causing molten metal to sag under gravity. Higher laser power increased melt pools temperature and led to dross formation at roof overhangs. Smaller hatch spaces increased roughness due to overlapping of melt tracks, while larger hatch spaces reduced surface roughness but led to decreased part density. The surface roughness was recorded at 34 µm for roof areas and 26.15 µm for floor areas. These findings contribute to potential adoption of TC4 alloy components in the space industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.